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We report an analysis of small-scale enstrophy ω2 and rate of strain s2 dynamics
in the proximity of the turbulent/non-turbulent interface in a flow without strong
mean shear. The techniques used are three-dimensional particle tracking (3D-PTV),
allowing the field of velocity derivatives to be measured and followed in a Lagrangian
manner, and direct numerical simulations (DNS). In both experiment and simulation
the Taylor-microscale Reynolds number is Reλ = 50. The results are based on the
Lagrangian viewpoint with the main focus on flow particle tracers crossing the
turbulent/non-turbulent interface. This approach allowed a direct investigation of
the key physical processes underlying the entrainment phenomenon and revealed
the role of small-scale non-local, inviscid and viscous processes. We found that the
entrainment mechanism is initiated by self-amplification of s2 through the combined
effect of strain production and pressure–strain interaction. This process is followed by
a sharp change of ω2 induced mostly by production due to viscous effects. The influ-
ence of inviscid production is initially small but gradually increasing, whereas viscous
production changes abruptly towards the destruction of ω2. Finally, shortly after the
crossing of the turbulent/non-turbulent interface, production and dissipation of both
enstrophy and strain reach a balance. The characteristic time scale of the described
processes is the Kolmogorov time scale, τη. Locally, the characteristic velocity of the
fluid relative to the turbulent/non-turbulent interface is the Kolmogorov velocity, uη.

1. Introduction
An important feature of many turbulent flows is the sharp interface that exists

between turbulent and surrounding non-turbulent flow regions. Examples of such
flows are free shear flows (jets, plumes, wakes, mixing layers), penetrative convection in
the atmosphere and in the ocean, gravity currents, avalanches and clear air turbulence.
An interesting property of these flows, commonly referred to as turbulent entrainment,
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is the process of transition of fluid from a non-turbulent to turbulent state through
the boundary between the two regions (e.g. Tsinober 2001). One physically qualitative
distinction between turbulent and non-turbulent regions is that turbulent regions
are rotational, whereas the non-turbulent ones are practically irrotational (Corrsin
1943; Corrsin & Kistler 1954). Until recently it was difficult to use this distinction
effectively, since it requires information on small-scale vorticity, which was difficult
to access experimentally. Also for this reason, the understanding of the mechanics
of turbulent/non-turbulent interfaces and the associated entrainment process is still
incomplete. Also, since turbulent entrainment is a phenomenon of Lagrangian nature,
the Lagrangian frame of reference is the appropriate one to investigate the details of
its mechanism. However, until now experimental studies of this kind are essentially
lacking in the literature.

In an early study, Corrsin & Kistler (1954) proposed on the basis of dimensional
reasoning that the thickness of the turbulent interface (they called it the ‘viscous
sublayer’) and its propagation speed are determined by molecular viscosity, ν, and the
mean-square rate of straining in the adjacent turbulent layer, which is proportional to
ε/ν, where ε is the energy dissipation in the adjacent turbulent region. On dimensional
grounds, the thickness of the interface is then proportional to the Kolmogorov
length scale η =(ν3/ε)1/4 and its speed of advance to the Kolmogorov velocity scale
uη = (εν)1/4. However, at large Reynolds numbers, the entrainment rate and the
propagation velocity of the interface relative to the fluid are known to be independent
of viscosity (e.g. Tritton 1988; Tsinober 2001; Hunt, Eames & Westerweel 2006).
Therefore, the slow process of diffusion of vorticity into the ambient fluid must be
accelerated by interaction of velocity fields of eddies of all sizes, from viscous eddies
to the energy-containing eddies so that the overall rate of entrainment is set by
large-scale parameters of the flow. This means that although the spreading is brought
about by small eddies (viscosity), its rate is governed by larger eddies. The total area
of the interface, over which the spreading is occurring at any instant, is determined
by these larger eddies (Tritton 1988).

The progress in experimental techniques and computational methods over the
last few decades has shed more light on the processes at work. For example, some
effort was dedicated to elucidating the significance of small-scale motion for the
entrainment process compared to the contribution of large scales. Bisset, Hunt &
Rogers (2002) used direct numerical simulations (DNS) of a plane wake, pointing
to the significance of large eddies for the observed interface dynamics. Westerweel
et al. (2002, 2005) used fluorescent dye to detect the turbulent front and particle
image velocimetry (PIV) for the analysis of flow properties at the interface of a jet.
Their results indicate that small-scale eddying motion at the interface is important
for its spreading. A similar view is supported by the numerical work of Mathew &
Basu (2002), who analysed the process of growth of vorticity and concentration in
initially non-turbulent fluid by computing pathlines of a representative collection of
particles. Interesting spectral vorticity and Lagrangian velocity measurements in jets
by acoustic scattering techniques are reported in Poulain et al. (2004). Hunt et al.
(2006) reviewed different studies of interfacial layers adjacent to layers with weak
and strong mean shear and it was shown that mean shear and anisotropy affect the
characteristics of interfacial layers. For example, mean shear was reported to increase
the degree of inhomogeneity, which is an intrinsic property of interfacial regions. One
aim of the presented research was to isolate other important physical processes at
work and the focus is on a turbulent interface in a flow without significant mean
shear.
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Figure 1. Schematic of the experimental setup. A time sample of the grid velocity obtained
from the encoder signal is shown in the upper right corner.

In their recent short publication, Holzner et al. (2007) analysed the dependence of
small-scale quantities on the distance to a turbulent/non-turbulence interface induced
by planar forcing. They used three-dimensional-particle tracking (3D-PTV) and DNS
to reveal some aspects of the inherent differences and the complex interplay between
small-scale strain and enstrophy in the proximity of interfaces. The present paper is
an extension of that work and presents an analysis of quantities in a Lagrangian
frame of reference by using the same setup and techniques. The particular focus is on
flow particles initially located in irrotational flow regions, which cross the boundary
between nearly irrotational and turbulent flow regions, in the following called the
turbulent/non-turbulent interface. This allowed us to identify how and when the
different physical processes set in. We discuss the evolution along particle trajectories
of all the terms of the balance equation for enstrophy, written as

D

Dt

ω2

2
= ωiωj sij + νωi∇2ωi (1.1)

and rate of strain,

D

Dt

s2

2
= −sij sjkski − 1

4
ωiωj sij − sij

∂2p

∂xi∂xj

+ νsij ∇2sij . (1.2)

In § 2 we describe the details of the experimental and numerical techniques that have
been used, the results are reported in § 3 and finally the conclusions are drawn in § 4.

2. Method
Experimentally, a turbulent/non-turbulent interface was realized by using the

oscillating planar grid described in Holzner et al. (2006). A schematic of the
experimental setup is shown in figure 1. The grid is a fine woven screen installed near
the upper edge of a water-filled glass tank and it oscillates at a frequency of 6 Hz
and with an amplitude of 4 mm. The scanning method of three-dimensional particle
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tracking velocimetry used for the measurements is described in detail in Hoyer et al.
(2005). 3D-SPTV is a flexible flow measurement technique based on the processing of
stereoscopic images of flow tracer particles. As in Holzner et al. (2007), the derivatives
of velocity, ∂ui/∂xj , and Lagrangian acceleration, ∂ai/∂xj , were calculated along
particle trajectories. The Laplacian of vorticity, ∇2ω, is obtained indirectly from the
local balance equation of vorticity in the form ∇ × a = ν∇2ω by evaluating the term
∇ × a from the Lagrangian tracking data, where ν is the kinematic viscosity of the
fluid. Through this indirect method only one derivative in space is needed instead of
three, but particle positions have to be differentiated twice in time in order to obtain
Lagrangian acceleration. Measurements of particle positions are affected by noise and
commonly one has to low-pass filter the trajectories in order to access quantities like
acceleration (e.g. Voth et al. 2002; Mordant, Crawford & Bodenschatz 2004; Lüthi,
Tsinober & Kinzelbach 2005). The lower the spatial resolution of the measurement,
the more the position signal is affected by noise and the higher is the required
over-sampling in time. The resolution in the present experiment is close to the one
used in Lüthi et al. (2005) and the filtering procedure is the same as the one described
in Appendix A of the same reference. The position signal is low-pass filtered with
a cutoff frequency of 10 Hz, which is well above a position frequency signal of 3 Hz
estimated from τη = 0.3 s and well below 25 Hz, which with 50 Hz recording rate
is the highest resolvable frequency. The number of tracked particles per frame is
about 6 × 103 in a volume of 2×2×1.5 cm3 about 2 cm away from the grid and the
mean interparticle distance �x is about 1 mm, which is slightly above the estimated
Kolmogorov length scale, η = 0.6mm. We estimated η using η = (ν3/ε)1/4, where
ε = 2ν〈s2〉 is the measured dissipation (s2 = sij sij is the rate of strain and sij are the
components of the rate of strain tensor). This estimate of the dissipation was verified
by using the relation 〈δu(r) · δa(r)〉 = −2ε, proposed by Ott & Mann (2000). The
estimated values of the mean dissipation derived by using the two different methods
lie within a range of 20%. The Taylor microscale, λ, is about 7mm and the estimated
Kolmogorov time scale is τη = 0.3 s, which is 15 times the time-interval between two
volume scans, �t = 0.02 s. In both experiment and simulation, the Taylor-microscale
Reynolds number is Reλ =50. Unfortunately, the pressure and the viscous terms
in (1.2) can at present not be obtained through PTV, but they are available in
the DNS.

DNS was performed in a box (side length 5L1, 3L2, 5L3) of fluid initially at rest.
Random (in space and time) velocity perturbations are applied at the boundary
x2 = 0. The procedure of generating the boundary conditions is as follows. For
a fixed time and at the discrete set of points, x1 = k�l , x3 = m�l (k, m integers),
each velocity component, ui (i =1, 2, 3), is calculated as ui = Viξ , where ξ is a
random number within the interval [−1, 1] and Vi is a given velocity amplitude.
For other times and spatial points (x1, x3) boundary velocities are obtained by cubic
interpolation in time and bilinear interpolation in space. At each time the three
boundary velocity components yield zero average value over the boundary plane. The
method of boundary velocity assignment determines the velocity scale, V = max(Vi),
and the length scale �l . The corresponding time scale is defined as �t = �l/V .
Together with the viscosity of the fluid, ν, these parameters define the Reynolds
number Re = V �l/ν = 1000 of the simulation. The Navier–Stokes equations are solved
with shear-free conditions ∂u1/∂x2 = ∂u3/∂x2 = u2 = 0 imposed at the boundary x2 =
3L2. Unlike Holzner et al. (2007), where a mixed spectral-finite-difference method
was used, the numerical scheme is now finite differences in all three directions with
time advancement computed by a semi-implicit Runge–Kutta method. This allowed
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Figure 2. Snapshot of an enstrophy iso-surface obtained from DNS. The value of the
iso-surface normalized over its mean in the turbulent region is ω2/〈ω2〉 = 0.01.

�xk �t Reλ τη/�t η/�xk λ/�xk

3D-SPTV 1mm 0.02 s 50 15 0.6 7
DNS 8 × 10−3�l 2 × 10−3�t 50 300 2.0 28

Table 1. Characteristic properties of the flow for the experiment and the simulation

a straightforward implementation of the integration of Lagrangian particle paths
(Nikitin 2006). The resolution is 256 × 256 × 256 grid points in the x1-, x2- and
x3- directions. This resolution at the relatively low Reynolds number of Reλ = 50 was
necessary to obtain a simulation that is very accurate at the level of enstrophy and
strain, i.e. that there is good pointwise balance between left-hand side and right-hand
side of (1.1) and (1.2). The analysis is done for times when the turbulent/non-turbulent
interface is about half a box size away from the source. The local Kolmogorov length
scale is twice the grid spacing. The paths of 4000 fluid particles have been calculated
by using

Dx
Dt

= u(x, t), (2.1)

where x is the position of the fluid particle at time t . For the time integration of the
particle position a third-order explicit Runge–Kutta scheme was used. The velocity
and other quantities of interest were interpolated to the trajectory point using a
bilinear interpolation in space. This interpolation scheme is of relatively low order
(e.g. Balachander & Maxey 1989), but comparison with higher-order methods showed
that owing to the high spatial resolution of the simulation the method is sufficiently
accurate. The fluid particles were released at t/�t = 5 and integrated until t/�t = 10.
Their initial positions are regularly distributed in a subregion of the computational
domain (2.5 < x1/L1 < 3.5, 1.2<x2/L2 < 2.2 and 2.5< x3/L3 < 3.5), in the proximity of
the vorticity surface shown in figure 2. The characteristic properties of the experiment
and the simulation are summarized in table 1.

3. Results
In both experiment and simulation, turbulence is generated at the plane x2 = 0

and propagates mainly along x2 > 0. In the previous study of Holzner et al. (2007)
the main focus was on the dependence of small-scale quantities on the distance
to the interface. The present investigation concentrates on the analysis of some of
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Figure 3. Conditionally averaged Lagrangian evolution of ω2 and 2s2 (a, b) and the
invariants Q,R and S (c, d), obtained from PTV (left) and DNS (right).

these properties in a Lagrangian frame of reference. We follow fluid tracers initially
located in the irrotational region and select particles which at some point cross the
turbulent/non-turbulent interface becoming part of the turbulent flow region. For
each particle trajectory, the point in time, t∗, when the interface is crossed is identified
by using a fixed threshold of enstrophy, ω2 = ωiωi , as in Holzner et al. (2006, 2007)
and references therein. For details on the selection of the threshold and the effect
of its variation see Holzner et al. (2007). For the statistical analysis, the measured
and simulated particle trajectories are averaged defining an ensemble of events. All
trajectories with initial position in the non-turbulent region are centred at the point t∗

introduced above and subsequently they are ensemble averaged. For the experiment,
about 3 × 103 trajectories with an average length of 4τη were processed in this way.
The number of points considered for the statistics is about 2 × 105. In the simulation,
out of the 4 × 103 trajectories about 400 crossed the interface, which yields a total
number of 5 × 105 data points.

Figure 3(a, b) shows the evolution of ω2 and 2s2, as obtained from PTV (a) and
DNS (b). The time axis is centred at the point t∗, when the threshold on ω2 is
exceeded, i.e. t̂ = t − t∗, and normalized by τη. We observe that ω2 is initially very low
and increases sharply in the proximity of t̂ = 0, attaining values of the order of the
intensities observed in the turbulent region. The transition from low to high values
occurs within a few τη. In contrast to enstrophy, strain is already significant in the
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non-turbulent region and increases more gradually. A simple argument that partly
explains this qualitative difference can be found in Landau & Lifshits (1959, p. 146),
which states that in the non-turbulent region vorticity is very small, but strain is not as
it consists also of an irrotational part. In the turbulent region, 2〈s2〉 becomes close to
〈ω2〉, consistent with the results in Holzner et al. (2007). The difference in magnitudes
between ω2 and s2 is an important feature of the observed transition, since in fully
developed turbulence enstrophy and strain are ‘equal partners’ (e.g. Tsinober 2001). If
we compare figure 3(a, b) with figure 1 in Holzner et al. (2007), it becomes clear that
fluid elements pass through an interfacial region with a thickness of a few η, within
a time characterized by a few τη. This implies that locally the characteristic velocity
of the fluid relative to the interface is the Kolmogorov velocity, uη. Figure 3(c, d)
illustrates the conditionally averaged evolution of the two invariants of the velocity
gradient tensor, Q = 1

4
(ω2 − 2s2) and R = − 1

3
(sij sjkski + 3

4
ωiωj sij ) and an additional

invariant based on the two viscous terms (only DNS), S = νωi∇2ωi − 2νsij ∇2sij , as
obtained from the experiment (c) and the simulation (d). Apparently, the invariants
reach an extremum near t̂/τη = 0, before they decrease again to lower values. Since
the mean values of Q, R and S vanish identically for homogeneous turbulence,
their non-zero values indicate that the particle paths cross regions characterized
by inhomogeneity, consistent with the analogous results in the form of a distance
dependence on the interface location shown in Holzner et al. (2007). The agreement
between experimental and numerical results is good, at least as far as qualitative
trends are concerned. Since the reason for the differences in the evolution of ω2

and s2 during the crossing of the interface lies in the different physical processes
responsible for their dynamics, in the following we analyse the evolution of the terms
of the respective transport equations.

The evolution of the terms of (1.1) is shown in figure 4(a, b) as obtained from
PTV (a) and DNS (b). Consistent with the evolution of 〈ω2〉 shown before, we see
that 〈(D/Dt) 1

2
ω2〉 is initially low in the irrotational region and grows steeply in the

proximity of the interface peaking at t̂ = 0, before it decreases again on the turbulent
side. The viscous term 〈νωi∇2ωi〉 exhibits a peculiar behaviour showing a distinct
maximum in the proximity of t̂ =0. It appears that initially the major contribution
to the growth of ω2 is due to the viscous term, 〈νωi∇2ωi〉 > 0, while the production
term 〈ωiωj sij 〉 is small and becomes dominant later. Shortly after the crossing of
the interface, 〈ωiωj sij 〉 and 〈νωi∇2ωi〉 balance out, so that 〈(D/Dt) 1

2
ω2〉 is small

compared to the other terms. It is useful to employ the following decomposition
of the term νωi∇2ωi = ν∇2(ω2/2) − ν∇ωi :∇ωi , where the first term on the right-
hand side (the so-called ‘viscous diffusion’ term) is responsible for the growth of
enstrophy at short times, while the second is a (always negative) dissipation term.†
The inset in figure 4(b) shows the Lagrangian evolution of the three terms. We
note that the term ν∇2(ω2/2) is strongly positive during the process with peak
near t̂/τη = 0, becoming smaller in the turbulent region. On the other hand, the
evolution of the negative ν∇ωi:∇ωi is qualitatively similar but remains of comparable
magnitude in regions A and B. Figure 4(c, d) shows the evolution of the terms of
(1.2) as obtained experimentally (c) and from DNS (d). Compared to the evolution of

† Note that the above decomposition of νωi∇2ωi – though useful – has a limitation since it is
not unique and there is an infinite number of possibilities to represent it as a sum of a dissipation
and a flux term (i.e. as a divergence of some vector), e.g. ωi∇2ωi = −(∇ × ω)2 − ∇ · (ω × (∇ × ω)).
There is no way to define dissipation (i.e. to choose one among many purely negative expressions)
of enstrophy as it is not an inviscidly conserved quantity, unlike the kinetic energy (Tsinober 2001).
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Figure 4. Conditionally averaged Lagrangian evolution of the terms of (1.1)(a, b) and
(1.2)(c, d) obtained from PTV (left) and DNS (right).

〈(D/Dt) 1
2
ω2〉 observed before, the mean (D/Dt) 1

2
s2 increases more gradually peaking

approximately at t̂ = 0. As indicated in Holzner et al. (2007), we see that the behaviour
of strain-related quantities is very different from their vorticity-related counterparts.
The contribution to the growth of s2 is partly due to strain production, −sij sjkski , and
partly due to the interaction between pressure and strain, −sijp,ij , whereas the viscous
term, νsij ∇2sij , is negative in the mean. Unlike 〈ωiωj sij 〉, strain production −〈sij sjkski〉
is already significant in the nearly irrotational region and grows anticipating the
growth of 〈ωiωj sij 〉. The agreement between numerical and experimental results in
figure 4 is not as striking as in figure 3, but the important trends are comparable.

Next, we analyse in more detail to what degree the different quantities contribute to
the growth of ω2 and s2 during different stages of the process. We apply the convention
introduced in Holzner et al. (2007) and define three physically distinct regions with
respect to the maximum of νωi∇2ωi (marked in figure 4a): A the turbulent region, in
which the behaviour of the viscous term is ‘normal’, i.e. it is negative in the mean; B, the
region between the peak and the point where 〈νωi∇2ωi〉 = 0 is termed the intermediate
region (with the ‘anomalous’ viscous production); and C, the non-turbulent region
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s2 (d–f ), according to the division in

3 regions shown on figure 4(a): turbulent – region A (left), intermediate – region B (centre) and
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ωiωj sij ; ·-·-·, −sijp,ij ;

· · · · · ·, νsij ∇2sij . Lines are from DNS, symbols from PTV.

from the peak to t̂/τη = −4. Figure 5(a–c) shows the terms on the right-hand side
of (1.1) conditionally averaged on (D/Dt) 1

2
ω2 for the three regions (A–C, from left

to right). We see that, on average, in region A inviscid production (ωiωj sij > 0) is
the mechanism responsible for the increase of ω2 and νωi∇2ωi is negative, whereas
negative values of (D/Dt) 1

2
ω2 are associated with viscous destruction (νωi∇2ωi < 0),

which counteracts the positive inviscid production. In region B, on average, both
inviscid and viscous effects contribute to the increase of ω2 and, finally, in region C the
stronger contributions to the positive (D/Dt) 1

2
ω2 are due to νωi∇2ωi > 0. Analogously,

figure 5(d–f ) shows the terms on the right-hand side of (1.2) conditionally averaged
on (D/Dt) 1

2
s2 for the three regions (A–C, from left to right). Unlike the previous

case, the qualitative behaviour changes only weakly throughout regions A–C. In the
mean, both the strain production and pressure–strain term contribute strongly to the
positive (D/Dt) 1

2
s2, while the viscous term remains relatively weak. On the other

hand, the viscous term and pressure–strain term are in the mean responsible for the
decrease of strain, counteracting −〈sij sjkski〉 > 0. Compared to regions A and B, in
region C the positive pressure–strain contribution appears to be somewhat stronger.

Finally, we analyse the dependence of the terms of the two balance equations on
the magnitudes of ω2 and s2, respectively. Figure 6(a–c) shows the terms of (1.1)
conditionally averaged on ω2 for the three regions (A–C, from left to right). In
region A, as expected, for higher values of ω2, on average ωiωj sij is approximately
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Figure 6. Terms of (1.1) conditioned on ω2 (a–c) and terms of (1.2) conditioned on s2 (d–f ),
according to the division in 3 regions: turbulent – region A (left), intermediate – region B
(centre) and non-turbulent – region C (right). (a–c) �, —, ωiωj sij ; �, - - -, νωi∇2ωi; �, ·-·-·,
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2
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balanced by νωi∇2ωi so that (D/Dt) 1
2
ω2 is close to zero. For small values of ω2 we

see that the average (D/Dt) 1
2
ω2 is positive due to 〈νωi∇2ωi〉 > 0, whereas 〈ωiωj sij 〉

is small. In region B, on average both viscous and inviscid effects contribute to a
similar degree to the positive (D/Dt) 1

2
ω2, while in region C the viscous contribution

dominates. The same analysis for the strain terms is shown in figure 6(d–f ). At high
levels of s2, in regions A and B the positive −〈sij sjkski〉 is approximately balanced
by the other terms so that the average (D/Dt) 1

2
s2 is small. At small levels of s2,

both −〈sij sjkski〉 and −〈sijp,ij 〉 contribute to the positive 〈(D/Dt) 1
2
s2〉, which is also

generally observed in region C. From the behaviour in region A at low intensities
we see that the characteristics in the proximity of interfaces might be similar to the
dominating small-scale mechanisms observed in regions characterized by low levels
of strain and enstrophy in fully developed turbulence.

4. Conclusions
In summary, a Lagrangian study was carried out to investigate small-scale

properties of the mechanism of turbulent entrainment through 3D-PTV and DNS.
The experimental results are in good agreement with the simulation, at least on
a qualitative level, which is considered as a clear indication for the reliability of
both methods. We found that the entrainment mechanism is characterized by a
sequence of events. The process starts with amplification of s2 through the combined
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effect of strain production and pressure–strain interaction. Next, a sharp increase
of ω2 induced mostly by νωi∇2ωi > 0 is observed, followed by a gradual increase of
enstrophy production ωiωj sij and the change of sign of νωi∇2ωi . Finally, production
and dissipation of both enstrophy and strain come to a balance. There is an indication
that a similar sequence might be observed also in regions initially characterized by low
levels of strain and enstrophy in fully developed turbulence. The analysis substantiates
that locally the characteristic velocity of the fluid relative to the turbulent/non-
turbulent interface is the Kolmogorov velocity, uη.
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